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This paper presents some recent theoretical results on the energy exchange be- 
tween a swimming flexible two-dimensional hydrofoil of finite profile thickness 
and the inviscid incompressible fluid in which the body swims. The rate at  which 
kinetic energy is transferred to the fluid by the undulating hydrofoil, the power 
required to maintain the prescribed motion, and the resulting power available 
for propulsion are calculated in terms of the thickness to chord ratio and the dis- 
placement and rate of displacement of the hydrofoil. With a small unsteady per- 
turbation theory, the analysis is decomposed to show separately the effects of 
the circulatory and non-circulatory flows, both depending on the first-order 
terms of the unsteady perturbation velocity components. In addition, an analysis 
is presented showing the effect of the non-linear unsteady pressure distribution 
on the surface of the hydrofoil. Contrary to what might be expected, this latter 
effect is of the same order of magnitude for a thick rounded-nose profile as for the 
flat plate where the effect is concentrated at  the sharp leading edge and is related 
to the so-called suction force. However, except for small values of the reduced 
frequency, the non-linear contribution is negligible in comparison with the linear 
contribution. 

New functions associated with the retarded flow in the wake are introduced 
and special techniques for their solution are presented, these being related to 
Theodorsen’s function of unsteady airfoil theory for the special case of the un- 
dulating flat plate. 

The numerical results reveal that the kinetic energy imparted to the fluid, the 
power required to maintain the motion, and the resulting propulsive power, follow 
closely those of an infinitesimal model for small values of the reduced frequency 
of oscillation, but diverge somewhat from the classical thin plate analysis for 
large reduced frequencies. Of particular interest is the fact that a very large per- 
centage of the power required to maintain the motion is used in the generation 
of the wake, whereas a very small percentage of the power available for pro- 
pulsion comes from the wake. This indicates that, if some mechanism could be 
devised to control the wake, very high swimming efficiencies could be attained. 
Fish, in all probability, have been succeeding in doing this for millions of years. 

1. Introduction 
During the past two decades considerable interest has developed between 

researchers in biology and in engineering hydrodynamics concerning the manner 
of manoeuvrability of various types of aquatic animals. Gray’s work (1936, 1948, 
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1957), in which he calculated the power dissipated by skin friction of a dolphin 
swimming at constant speed, was the primary stimulus for much of this interest. 

Taylor ( 195 1,1952 a)  paved the way for new problems in hydrodynamics with 
a study concerning the action of moving cylindrical tails in propelling micro- 
scopic organisms in a viscous fluid, in which he assumed the tail of the organism 
to be a flexible cylinder which is distorted by waves of lateral displacement propa- 
gated along its length. He assumed that the viscous forces played the leading role 
in propelling the organism. In a subsequent study Taylor (1952 b)  investigated 
the swimming of long animals such as snakes, eels, and marine worms by con- 
sidering the equilibrium of a flexible cylinder immersed in water when waves of 
bending of constant amplitude travel down it at  constant speed. 

As another approach to the problem of propulsion of sea animals, Siekmann 
(1963a) discussed the hydrodynamics and propulsive properties when a jet of 
fluid is ejected from the opening of a tube. 

Lighthill (1960a) discussed the hydrodynamics of fish propulsion at  the 
forty-eighth Wilbur Wright memorial lecture, and in a later publication (1960b) 
he considered the swimming of slender fish in which he employed as a model a 
slender cylindrical snake-like configuration immersed in a uniform flow field 
directed along the stretched-straight configuration of the model. His theory goes 
back to Murk’s (1924) work on flow about airships. 

All of the above studies dealt with a three-dimensional axisymmetric-type 
flow problem. 

Several investigators have discussed the propulsive forces generated by an 
undulating flexible plate of infinitesimal thickness and infinite aspect ratio in 
two-dimensional flow. Each of these investigators assumed that the thrust was 
generated by small time-dependent lateral displacements which are in the form 
of waves of displacement that pass down the chord of the plate from the leading 
edge to determine the forces acting on the plate. Siekmann (1962, 19633) used 
the unsteady airfoil theory developed by Schwarz (1 940) and Kussner & Schwarz 
(1940) where the thin plate and its wake are replaced by a vortex distribution of 
fluctuating strength. Smith & Stone (1961) considered the same physical problem 
as Wu (1961) and Siekmann (1962, 1963b) where they represented the plate in 
elliptic cylindrical co-ordinates. Smith & Stone satisfy the unsteady boundary 
conditions by solving the Laplace equation for the velocity potential and satisfy 
the Kutta-Joukowski hypothesis of smooth attached flow at the sharp tail by 
adding a circulation around the plate of fluctuating strength such that the net 
induced unsteady velocity at the tail is finite for all time. However, Smith & 
Stone failed to consider the entire wake and, as such, their theory does not agree 
with Wu’s (1961) and Siekmann’s (1962,1963b) theories. Pao & Siekmann (1964) 
corrected the Smith-Stone theory to include the wake effect. 

Bonthron & Fejer (1962) studied the two-dimensional problem of fish locomo- 
tion by employing as a model three infinitely thin rigid plates hinged together 
where both rotational and translational oscillations were imposed upon the plates. 
They used Theodorsen’s (1934) theory for a system of finite degrees of freedom 
and solved the dynamic equilibrium equation by carefully balancing the side 
forces for a freely swimming body. 
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Uldrick & Siekmann (1964) have considered the swimming of a two-dimen- 
sional model possessing a finite thickness and have found that the available time 
average thrust decreases with increasingly thick profiles. They made no attempt 
t o  calculate the energy dissipated in the body’s wake or the power required to 
maintain the motion. Moreover, Uldrick & Siekmann’s theory is not complete 
since they linearized their problem by assuming a very small, but finite, thickness. 
Their theory is modelled after Kussner & Gorup’s (1960) theory of unsteady flow 
about an airfoil of finite thickness. 

All of the above studies were purely theoretical in nature. 
Kelly (1961) measured experimentally the propulsive forces produced in an 

undulating, thin two-dimensional plate and found that the theory developed by 
Siekmann (1962,1963b) and Wu (1961) was in some agreement with experimental 
evidence when allowance was made for skin friction. 

Recently, Kelly & Bowlus (1963) made an experimental investigation of the 
swimming of hinged hydrofoils. The purpose of their study was to examine a few 
of the intermediate cases between the completely flexible hydrofoil and the com- 
plately rigid one. They chose a NACA symmetric airfoil no. 63009 as a model for 
the stretched-straight fish and measured the thrust generated by single-hinged 
and double-hinged hydrofoils undergoing prescribed vertical oscillations (heav- 
ing and pitching). Kelly & Bowlus made no attempt at  assessing the effect of 
body thickness on the propulsive force generated by the controlled motion of the 
hydrofoil. 

2. General mathematical and physical formulation of the problem 
As a starting-point in the formulation, the general theory developed by Uldrick 

& Siekmann (1964) will be employed. 
To fix ideas, we choose a Cartesian co-ordinate system (x’, y’) fixed relative to 

the fluid at infinity such thab the forward velocity U of the hydrofoil is along 
the negative 2’-axis. 

By the Galilean transformation 

x = x’+ Ut+const., y = y‘, 

the motion is referred to a co-ordinate system (x, y)  fixed at  the hydrofoil such 
that the nose is located at  x = - L and the tail at x = L. Clearly, for a constant 
forward velocity U ,  both reference frames are Newtonian; thus, either system can 
be used to calculate the pressure distribution on the body or, ultimately, the lift, 
moment, and drag experienced by the body. 

We will employ the co-ordinate system (x, y) fixed at  the hydrofoil to calculate 
the pressure distribution. 

Consider the symmetric profile with length 2L as shown in figure 1. This we 
call the stretched-straight configuration. It has a rounded leading edge and a 
sharp trailing edge. 

Now, let us immerse this configuration in an incompressible irrotational flow 
field such that the flow is symmetrical around the body where the flow is along 
the positive x-axis as shown in figwe 1. Since the flow is assumed to be irrota- 
tional, we use complex variable theory to determine the flow properties around 
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this body. This is accomplished by determining the flow field around a circular 
cylinder and then by a conformal transformation calculating the flow field around 
the symmetric body. To describe the flow field, we employ the complex velocity 
potential method. 

t’ 

FIGURE la. Profile plane (z  = x + i y  plane). 

FIGURE l b .  Circle plane ( 5  = E+iq plane). 

We denote the complex space variables in the circle plane by < = f + ir, as 

From the circle theorem the complex potential Yo(<) is easily seen t o  be 
shown in figure 1 b.  

where b is the radius of the circle. The free-stream velocity in the <-plane is taken 
to be U / 2  for convenience. 

As a model for the stretched-straight configuration, we employ a symmetric 
Joukowski profile given by 

where 6 is a small positive quantity (0 < E < b)  representing a measure of the 
thickness, and E is a real quantity which locates the head at  x = - L and the tail 
at  x = L. 

The unsteady motion of the hydrofoil is chosen to simulate that of certain sea 
animals. We express this displacement in general complex time and space as 

D(z, t )  = ~ H * ( x )  eiul, (2.3) 
where j = J- 1, which is not to be confused with the space imaginary unit i, 
and H*(x)  is complex with respect toj .  Remember in the final analysis we must 
take the real part in the complex time quantities for physical interpretation. 
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According to Uldrick & Siekmann (1964) the linearized unsteady boundary 
condition for the fluid velocity is 

(2.4) 
a2 ao DoaD 
at at az ax 

circle is @,.(a, t )  = U C ( 9 )  efwt,Jr (2 .5 )  

----+--, - 

and the corresponding velocity of a fluid particle in a normal direction on the 

(2-6) 
where 1-az sin 9 dH,* (a))] 

I f ' ( b e i + ) 1 2 T  z= f (b e% 
G(9) = --I&?{- b d$ (jaB,*(8)- 

in which Ri denotes the space real part operator, a = wb/U is the reduced fre- 
quency, and HT(8) = H*(x).  For the symmetric body here under consideration 
it can be shown that G(8)  is an odd function which we expand in a Fourier series 
as m " 1  

n = l  n = l  b2 
G(9) = 2 P, sinn9 = 2 C - [b,-c,] sinn9, (2.7) 

where the b, and c, can be calculated from equation (2.6) by the Fourier inversion 
formula. It should be noted that these coefficients are complex with respect toj. 

The boundary condition on the circle can be satisfied by a source distribution 
on the boundary of the circle. From the basic definition of a source, it  follows that 

Due to the presence of a sharp tail, the unsteady velocity there resulting from 
Fl will be infinite. Thus, as in unsteady airfoil theory, we introduce a sheet of 
distributed vortices along the wake streamline of the steady flow with a distribu- 
tion of counter-image vortices on the interior of the circle such that the corre- 
sponding induced velocity at the sharp tail by these vortices will cancel for all 
time that due to the source potential. Furthermore, we assume that each vortex 
element moves downstream with the local velocity of the steady state flow and 
does not decay. Under these conditions $he circulatory potential can be written 
as 

where 

and 

(2.10) 

(2.11) 

is the age of the vortex element situated at  xo = f(tO). 
Finally, with the small perturbation theory we have 

p = PAC) + Fl(5, 4 + F2(L t )  (2.12) 

and w=-= u - iv. (2.13) 

Quantities in the circle plane are denoted by a circumflex. A bar over a function denotes 
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aB 
ax 

its compIex conjugate. 
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3. Pressure distribution on the surface of the body 
From the unsteady Bernoulli equation, we have 

wherePo is the pressure far upstream from the body, which is taken to be constant, 
4 is the velocity potential, which in our case is the real part in the space imaginary 
unit i of the complex potential F ,  and q is the speed of the considered fluid particle. 
Substituting ( 2 . 1 2 )  into (3 .1 ) ,  we get for the unsteady pressure distribution on 
the body 

Il(8,t) = -pR, 

It is convenient to decompose this distribution into three parts as follows: 

where 

and 

(3 .3a )  

(3 .3b )  

It should be noted that 111 and II, are of first order in the unsteady velocity 
components, whereas II, is of second order in the perturbation velocity. In the 
small perturbation theory usually the non-linear terms are neglected in the ana- 
lysis. However, as will be shown in what follows, the effect of the non-linear terms 
is of the same order of magnitude as that of the linear terms, and hence cannot 
be neglected. 

By substituting (2 .7 )  and (2.8) into (3 .3a )  we find, after some lengthy analyses, 
that the non-circulatory pressure distribution becomes 

(3 .4 )  

The circulatory pressure distribution Ilz on the body can be found as follows. 
First, we note that the time variation in F2 is due entirely to the movement of the 

(3.5) 

Using the last result and (2 .9)  in (3 .3b)  it  follows that the pressure distribution 
due to the coupling of the vortex sheet and the free stream is 
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1 1 F m  2b2sin0 U sin 0 6; - b2 
where W = ~ 

U b q !  [ b2 + 6; - 2b6, cos 0 + If’(b eie) I b2 + c: - 2bc0 cos 8 

in which 

Finally, the unsteady pressure IT3 resulting from the non-linear terms in the 
Bernoulli equation ( 3 . 3 ~ )  can be expressed in terms of the unsteady velocities as 

where it evolves from equations (2 .8) ,  (2 .9)  and (2 .13)  that 

m 

8,(0, t )  = i U e i ~ t e - ~ ~ 2  I: PncosnO 
n=l 

(3 .10)  

- iy, e-i6 eiwt m 
e - ~ w T f ’ ( ~ O ) d c o .  (3 .11 )  

2nb s b b2 + <: - 2b5, cos 8 and t ,  = 

Geometrically it can be seen that the magnitude of 8,(8, t )  is an even function of 
0 and is proportional to the integral expression in (3 .11) .  Thus we write 

where, by the Fourier inversion formula, it follows that 

(3 .12)  

(3 .13)  

Finally, by substituting (2 .10)  and (3 .8 )  into (3 .12) ,  there results 

(3.14) 

(3 .15)  
in which we defined the ratio 

and refer to it as a wake function. Clearly, the coefficients V,  are complex in the 
time imaginary unit j and are functions of the reduced frequency and mapping 
function z = f ( [ )  only. 

m m 
a2(8,t) = -ie-ieU2 c Pmeiwl 

m= 1 

v, = w,n/wo 

From (3 .10)  and (3 .14)  we obtain 

8,+8,= -ie-ieUeiwL 

and thus, from (3 .3c ) ,  1’13(0, t )  can be calculated. It should be pointed out that 
the Kutta condition places constraints 

q)+2 c m V , = 1  

n= 1 
(3.17) 

on the wake functions. 
3-2 
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Inspection of (3.16) and ( 3 . 3 ~ )  indicates that It3(@, t )  is an even function of 8 
which can be expressed in a Fourier cosine series. 

4. Formation of energy transfer concepts 
In order to calculate the efficiency of propulsion, we need to determine the 

energy dissipated in the fluid during some time interval of motion. For an in- 
compressible inviscid fluid, Serrin (1959) gives the rate of change of kinetic energy 
in a material volume of an incompressible inviscid fluid with constant body forces 
as 

where V is the velocity of the fluid particle contained in the element of volume d r  
referred to the co-ordinate systems fixed in the fluid at  infiniby; dldt denotes the 
material derivative with respect to time; V is the material volume, i.e. the entire 
volume exterior to the hydrofoil; Y is the surface enclosing Y ;  n is the outward 
unit normal vector; and ds is the element of surface area. 

Now at any instant of time the kinetic energy of the fluid is 

We wish to determine the kinetic energy generated by the motion of the hydro- 
foil during some period of time, say the period of one oscillation To = 27r.10. Thus, 
from (4.1) and (4.2) it develops that the time average increase in kinetic energy 
generated in the fluid by the undulating hydrofoil is 

(4.3) 

Next, we must analyse the integral on the right of (4.3). Since Y is a material 
surface, only the unsteady pressure distribution contributes to this surface 
integral. We decompose 9’ into a surface .u7, and 9’, a cylindrical surface with 
a radius R-+ co from the body and the surface of the body, respectively. The sur- 
face Ym can be taken at a sufficiently large distance from the disturbing body that 
the surface integral on Ym vanishes. Thus, we have 

In order to avoid a cumbersome notation, we first evaluate the surface in- 
tegral, which can be written in our complex notation as 

However, on it can be shownthat 
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Employing this last formula and (2.5) to (2.7), equation (4.5) becomes 
277 00 

E(t)  = .‘I R,(n1+ II,+ n 3 ) R j 2  I; jnbneiwtsinn8d8 
b o  n= 1 

By a careful analysis of the first term in (4.7),  it can be seen that this is simply the 
power required to drive the hydrofoil, i.e. 

00 

R,(ITl+ n , + n , ) R j 2  x jgbnejwtsinn8d8. (4.8) 
n = l  

The remaining terms in (4.7) may be thought of as the power put into the fluid 
by virtue of the hydrofoil’s movement through a still fluid, which we denote by 

nn 

+ URii# R,(rl,+ rI2+rI3)d2. 
Y B  

(4.9) 

It should be noted that, if W ( t )  is positive, energy is being put into the fluid by 
this power term. On the other hand, if W ( t )  is negative, energy is being extracted 
from the fluid by the body and, as such, represents the power capable of propelling 
the hydrofoil. Thus, we define the power of propulsion as T(t)U = - W(t)  = g(t), 
where T( t )  is a thrust force acting on the body in the direction of the forward 
motion of the body. 

5. Power required to drive the hydrofoil 
The power input is given by (4.8). We introduce the notation 

bneiwl = 6’ +jbn = (b‘ + j b ” )  eiwt, 

pn eimi = pi +jp: = (pi +jp:) eiwt, 
n n  n n  

and similar relationships for the other coefficients. 
Thus, from (5.1) and (4.8) there follows 

(5.1) 

It is convenient and instructive to compute the power in three parts depending 
upon the pressure n,, II, and n3. By employing (3.4) and (5.1) and by introduc- 
ing the relation - 

m sin8 
P o + 2  x pncosn8= 2 x bnsinn8, 

n=l If’(beie)12 n=l 

we find the power required to generate the non-circulatory flow is 

(5 .3 )  
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Next, the power required to produce the wake is calculated by (3.6) and (5.2) as 

By employing (3.7) and (5.5) and performing the indicated integrations, we 

where (5.7) 

and W2, is given by (3.13). 
We introduce the notation 

w, = w;+jw;, w,, = w;,+jw;,, w,, = w;,+jw;,, (5.8) 

Un = UA +jut = W,,/Vo and Vn = Vk +j V; = W2,/W0. (5.9) 

and the ratios 

By employing these notations, (5.6) becomes 

(5.10) 

The power P3 can be calculated in a similar manner by using (5.2) and (3.9) 

to (3.16), where it develops that P, vanishes. 

6. Power of propulsion 

fluid. By employing (4.9) and the notations given by (5.1), there follows 
Next we calculate the power available for propelling the hydrofoil through the 

As was done previously, we calculate the power of propulsion in three parts 

By using (5.1), (6.1) and (3.4) and by introducing the relation 
depending upon the pressure terms 111, II, or II,. 

sin0 ID m 

2 c,sinnO= y0+2 y,cosnO I f ' (be ie )I2  n=1 n= 1 

and by noting that the contour integral vanishes for a symmetric profile, the 
propulsive power resulting from the linearized non-circulatory flow becomes 

Similarly, by (5.1), (6.1) and (3.6), the propulsive power produced by the linear- 
ized circulatorv flow is 
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where again it can be shown that the contour integral in (6 .1 )  vanishes for a sym- 
metric body. The integral in (6.4) is of the same type occurring in the previous 
section. After following the same integration procedure outlined there, together 
with the relations defined in ( 5 . 9 ) ,  we obtain 

m 

E;U;+76V:+2 x ?.IF’;]). (6 .5)  
m= 1 n=l  

Finally, the contribution to the power of propulsion due to the pressure distri- 
bution 113 is given by (6 .1 )  as 

If we recall that 113 is an even function of 0, then it can be shown that the first 
integral in the above equation vanishes. The remaining integral can most readily 
be calculated by a change of variable to the c-plane and by performing the corre- 
sponding contour integration around the circle of radius b. By using (3 .9 )  and 
making the change of variable to the c-plane, we obtain 

(6 .7 )  
d c  

9 3 ( t )  = tPuRii $ [ ~ j ( a l ( ~ ,  t )  + G ~ ( c ,  t))12jm 2 
v 

where %? is the contour of the circle. Thus, by the residue theorem, it develops 
that 

Now we must evaluate &,( -b+Zs , t )  and @,( -b+Ze , t ) .  From the complex 
potential Fl(6, t )  as given by (2 .8 ) ,  there follows after some straightforward 

Y3(t) = &npU(b - ~ ) { R j [ @ l (  - b + Z S ,  t )  +a,( - b + 2e, t ) ] }2.  (6.8) 

manipulations - 

(6 .9a )  

where ,LA = - 1 + %/b. (6 .9b)  

Similarly, from the potential l?,(C, t) as given by (2.9), it can be shown that 

1 
where v ,  = pn+-. (6 . lOb)  

Then, from (2 .10) ,  (3 .8) ,  (3.13) and (3.15) there follows: 
P” 

(6 .11)  
W m 

O,(bp,t) = - i U 2  x 
n = l  

Finally, from (6 .10) ,  (6.12) and (6 .9) ,  we obtain 

m 

m= 1 n=l  



7. Input power, energy dissipation, and power of propulsion coefficients 
As has been done in previous works, it is convenient to  express the results 

in coefficient form. Therefore we define the following coefficients. 
Power of propulsion or thrust coefficient: 

c - C(1) ( 3 2 )  
(7.1) T - T + +c$), 

where 

Input power coefficient: Cp = C$) + C$Y + CF), ( 7 . 3 )  

where Pi(t)dt  (i = 1 , 2 , 3 ) .  (7.4) 

Energy dissipation coefficient: 

c, = (7%) + cg + cgj, 
where cy, = cy-cp (i = 1 , 2 , 3 ) .  

From (5.1) we can perform the indicated time integration by noting that 

and 

(7.7a) 

(7 .7b)  

and similar relationships for the integral of other products. 

the following. 
By substituting the results of (6.3), (6.5), (6.12) and ( 7 . 7 )  into (7.2),  we obtain 

Non-circulatory thrust coefficient : 

Circulatory thrust coefficient : 

and the non-linear contribution to the thrust coefficient 

Further, from (7.4), (5.4), (5.10) and (7 .7 )  there follows 
Non-circulatory input power coefficient : 

(7.9) 

(7.10) 

(7.11) 
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Circulatory input power coeficient : 

CT ( 5 [2(PAb~+PAb:)U~+2(P;b: , -P~b:)UA+ (PApA+P;p;)V; 
= b,Zl nb=l 

+2(PApA+PAp:)V:+ (PA&- P;p;)VA+ 2(PApA-PAP:)VA] (7.12) 

(7.13) 

The energy dissipated in the wake can be determined quite simply by (7.5). 
Finally, we can compute the gross theoretical hydrodynamic efficiency by 

1 
and cp = 0. 

power of propulsion 
input power 

x 100, reff = (7.14) 

(7.15) c, 
7/Jeff = - x 100. 

CP 
or 

8. Numerical analysis and example 
In order to determine numerical values for the various coefficients above, it is 

necessary t o  compute the real and imaginary parts of the b,, p,, c, and y, coeffi- 
cients and the real and imaginary parts of the wake functions U, and V,. Once the 
b, and c, coefficients are known, the P, coefficients can be found rather simply 
by using (2.7).  

From (2.6), (2.7)) (5.4) and the Fourier inversion formula, there follows 

and 

I n  order to compare this theory with that of previous authors, we take a 
quadratic displacement function as 

H*(x)  = (d,+d,x+d,x2)e-fa” ( - L  < x < L), (8.3) 

where the di’s are taken from observations of the swimming of certain types of 
sea animals, x is the abscissa of points on the stretched-straight hydrofoil 
measured from the centre, and CL is the wave-number. 

Thus, from (2.2) we have 

where E = L-b+s .  (8.5) 

With the aid of these last results and (8.1) to (8.3), we find the real and imagin- 
ary parts of the b, and p, coefficients to be 

(do + d, x + d, x2) e-iax sin nod0 (8.6) 

1 n sin0 d x  
77 If‘(beie)Izd6’ 

and pk+jp: = --! - (da+d,x+d,s2)e-~axcosn0 do. (8.7) 
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Similarly, from (2.8) to (2.10), (6.3) and (8.3), there follows 

c:,+jc; = ' S T [  sin 8 i"i2] 

yA+jyi = n s o  -~ [ f ' ( b e i s ) l z $ r  

7~ If'(beis)12 de 
x [ja(do+d,x+d2X2) - (a,+ 2d2)]e-iazsinn6Jd@ (8.8) 

1 ,, sin8 
and 

x [ja(do+d,x+d2x2)- (d +2d2)]e-fazcosn0d6J. (8.9) 

All of the above displacement coefficients have been computed through 
n = 32 by numerical integration techniques with the aid of an electronic digital 
computer for values of the thickness parameter a = 0-1, 0.2, 0.3. 

Let us now consider the numerical analysis of the wake functions W,, W,, and 
W,, as given by equations (3.8), (3.14) and (5.13), respectively, and in par- 
ticular their ratios U, and V,  as defined by (5.15) and (5.16). As can be seen, the 
integrands of these integrals oscillate an infinite number of times in the integra- 
tion interval where the exponential involves the age of a vortex element 7. 
Since our theory is applicable only for relatively small values of the reduced 
frequency cr, say in the range CT = O +  10, we propose t o  employ a method of 
analysis similar to that used by Kussner & Gorup (1960). 

By introducing a new variable defined by 

= bK0 (8.10) 

into equation (2.11) and by employing (2.2), the age of a vortex situated at  
&, = b/u becomes 

7 =  - "/:u"[l- 2 U  1-u' U' (-c)2j2du. b - e u  (8.11) 

By using partial fractions and after some rather lengthy algebraic manipula- 
tions, (8.11) can be integrated analytically to yield 

(8.12) 

where 
2 

7*@) = i ( 1 -  q 2 2 logTlq+ ~ ( 1 -  2p+p3) (1 -Y) - g(1 (1 -r2) 

1 r(1-u)  €2 

( b  - €2~) '  3 
- Q( 1 - q)  (1  - r3 )  - ~ [b2 - be( 1 +u) + - (1 + u + u2) ( 8 . 1 3 ~ ~ )  

in which (8.13 b )  

Here T*(u) is a holomorphic function in our interval u = 0- t  1. 

equations (3.8), (5.7) and (3.13) become 
By making the change of variable defined by (8.10) and employing (2.2), 
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du 
U 2  

1 1  
and W,, = 5 / o  (1-r2u2)unexp exp{-jx~*}-, (8.16) 

where x = 4 ~ .  
As can be seen, the factor (1/u2) exp { -jx( 1/u)} in the integrand of these in- 

tegrals is singular and the remaining factors are regular functions in the integra- 
tion interval. For values of B < 10 we can expand these regular factors into 
polynomials of the form 

a, 

<(u) = Criinun (i = 0,1,2) ,  
n=O 

(8.1 7 a )  

(8.17b) 
l + u  
1-24, 

where Po(u) = - (1 - @u2) exp { --jx7*(u)}, 

(8 .174 

and P2(u) = (1 - ~ 2 ~ 2 )  exp { -jx7*(u)}. (8.17d) 

Now, with the aid of these polynomials, the wake functions can be integrated 
analytically to give 

(8.18) 

m eix 

m=O 3 X  
W,n = C B l m ~ m + n + l  9 (8.19) 

(8.20) 

in which C, =jX/:u"-2exp(-j:)du. (8.21) 

By integrating (8.21) we obtain the results 

x 0 -  - C' 0 + 3 'C" 0 -  - e-ix 9 (8.22 a )  

1 -  - X'+  1 3 'C" 2 -  - -jx[3/*+logjxI+ c (8.22b) 
m ( - j ~ ) n + l  

n=l  n n !  ' 
where y* = 0.5772157, Euler's constant, and 

(e-ix - C n-1). (8.22 c) 
n - 1  

In order to evaluate the a$,. coefficients, we fist approximate 7*(u) given by 

(8.23) 

j X  Cn = x;+jz; = ~ 

(8.13) by a 'least squares' fit with a second-degree polynomial of the form 

7*(u) = A + Bu + Cu2, 

and then make the following series expansion: 

1 -r2u2 = I: En@, 
n=O J 

where with the aid of (8.13b) the a",, 6, and En can be found quite easily. 
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Now we expand the exponential function in a MacLaurin power series as 

where, after some tedious algebra, the coefficients 8, and A, can be found to de- 
pend upon B,  C and x. 

U 

FIGURE 2.  Thrust coefficient vs. reduced frequency (a  = n). 

-0.01 1 I I I I I 
2 4 6 8 10 

U 

FIGURE 3. Thrust coefficient us. reduced frequency (a = in, E = 0.2). 
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From (8.13), T*(u) was calculated for eleven equally spaced values of u running 
from 0 to 1.0 and for values of e of 0,0.1,0.2 and 0.3. Next, by employing a stand- 
ard least squares bechnique, the constants A ,  B and C in equation (8 .23)  were 
computed. Then, for the numerical calculations of the real and imaginary parts 

0.07 

0.06 

0.05 

0.04 

' 0.03 

0.02 

001 

0 
" - 

€ =  0.1 € =  02 E = 0.3 

-001 I I I I I I 

2 4 6 8 10 
0- 

FIGURE 4. Thrust coefficient ws. reduced frequency (a = 0). 

of the wake functions VA, V i ,  UA and U i  equations (8.18), (8.19), (8 .20) ,  (8 .22 ) ,  
(8.24), (8.25),  (5.15) and (5.16) were programmed and calculations performed for 
the different values of the thickness parameter e given above and for reduced 
frequencies = 0,  1, 2, 4, 6, 8 and 10. In  order to obtain accuracy to  the fifth 
place in the thrust and power coefficients, it was necessary t o  compute n = 32 
wake functions for each thickness parameter and each reduced frequency. 

Finally, (7.8) to (7.13) were programmed for the numerical calculations of the 
various thrust and power coefficients. These results are given in tables 1 to 3. 
Some of the significant results are plotted in figures 2 to 11. 

Shown in figure 2 is the effect of thickness on the thrust coefficient for a wave- 
number, a = n-. Figure 3 shows the contributions t o  the total thrust by the non- 
circulatory flow, the circulatory flow, and the non-linear pressure distribution 
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on the body. In  figure 4 is shown the effect of both thickness and magnitude ofthe 
thrust generated by the non-circulatory flow, the circulatory flow, and the non- 
linear pressure distribution on the body for a standing-wave-type swimming 
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FIGURE 5. Thrust coefficient DS. reduced frequency (a = in, E = 0.2). 
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motion. It should be noted that with a standing-wave swimming motion the 
wake produces no net forward thrust, whereas for a finite wave speed such as is 
depicted in figure 3 the wake produces a net forward thrust for sufficiently large 
reduced frequencies. 

Shown in figures 5 and 6 are some recent experimental results obtained in the 
engineering mechanics laboratories at Clemson University using flexible hydro- 
foils of finite thickness moulded with a Silastic RTV Silicone rubber, the shape of 
the profiles being that given by the present theory. 

In  interpreting these results, it must be kept in mind that the present theory is 
based on unsteady airfoil theory wherein it is assumed that the inertia forces 
play the predominant role in generating propulsion and the viscous effect is 
only responsible for generation of the wake by requiring smooth attached flow 

0 
1 
2 
4 
6 
8 

10 

0 
1 
2 
4 
6 
8 

10 

0 
1 
2 
4 
6 
8 

10 

C"' T C(a) T (33) T cy Q(2' P CT 
E = 0.1, a = 7r 

0.00369 -0.00646 0.00277 0 0 0 
0.00178 - 0'00549 0.00005 - 0.00011 -0.00152 - 0.00366 
0.00069 - 0.00341 0*00005 -0.00013 - 0.00151 - 0.00267 
0.00094 0.00109 0.00009 0.00010 0.00295 0.00212 
0.00442 0.00562 0.00013 0.00071 0.01331 0.01017 
0.01115 0.01019 0.00017 0.00169 0.02960 0.02151 
0.02120 0.01462 0.00024 0.00302 0.05090 0.03606 

6 = 0.1, a = fr7r 

0.00194 -0'00577 0.00383 0 0 0 
0.00092 - 0.00337 0.00031 - 0.00003 - 0.00065 - 0.00213 
0.00111 -0.00127 0.00007 0.00007 0.00100 - 0.00009 
0.00509 0.00253 0.00006 0.00071 0.01 124 0.00768 
0.01391 0.00621 0*00025 0.00190 0.03068 0.02037 
0.02754 0.00982 0*00059 0.00366 0.05925 0.03797 
0.04601 0.01340 0.00109 0.00598 0.09694 0.06051 

6 = 0.1, a = 0 

0.00114 -0.00300 0.00187 0 0 0 
0'00184 - 0.00251 0.00030 0.00006 0.00138 - 0.00036 
0.00394 - 0.00239 0.00044 0.00028 0.00584 0.00199 
0'01236 - 0'00224 0.00114 0.00115 0.02354 0.01126 
0.02637 - 0.00212 0.00234 0.00258 0.05289 0.02659 
0.04601 - 0.00201 0.00401 0'00459 0.09378 0.04801 
0.07124 -0.00191 0.00617 0.00717 0.14618 0'07551 

TABLE 1. Thrust and power input coefficients, CT and Cp. do = 
d, = 0.042, d, = 0.034. 

QP ?I& 
(%) 
- 0 

-0.00163 - 
-0.00164 - 

0*00305 69.5 
0.01402 72.8 
0.03129 68.8 
0.05392 67.2 

- 0 
-0'00068 - 

0.00108 - 
0.01195 64.2 
0.03258 62.6 
0.06292 60.4 
0.10292 58.7 

- 0 
0.00146 - 
0.00612 32.5 
0.02470 45.7 
0.05547 48.0 
0.09838 48.8 
0.15336 49.4 

0.023, 

at  the tail. Therefore, in order to compare the theory realistically with experi- 
mental observations, an attempt was made to separate the effect of frictional 
drag and the effect of the unsteady thrust produced by the swimming motion of 
the hydrofoil. This was done by measuring the frictional drag at  a prescribed 
forward speed with no undulations imposed upon the hydrofoil, and then 
measuring the thrust generated for various driving frequencies, w, at the same 
forward speed of the hydrofoil and separating the steady -state streamwise force 
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from the time average unsteady streamwise thrusts. This procedure allowed the 
measurement of several thrust coefficients for the several reduced frequencies at  
only one forward speed. Of course this technique assumes that there is no inter- 
action between the unsteady undulations and the development of the boundary 
layer. Further experimental and analytical investigation into this phenomenon 
is needed. 
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4 
6 
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0 
1 
2 
4 
6 
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10 

0 
1 
2 
4 
6 
8 

10 

C'1' 
T 

0.00278 
0.00122 
0.00038 
0.00082 
0.00410 
0.01024 
0.01921 

0.00146 
0.00067 
0~00091 
0.00455 
0-0 1235 
0.02434 
0.04050 

0.00088 
0.00148 
0.00327 
0.01044 
0.02240 
0.03914 
0.06065 

c'2' 
T 

- 0.00413 
- 0.00437 

0.00087 
0.00457 
0.00823 
0.01184 

- 0.00277 

- 0'00503 
- 0'00307 
- 0~00120 

0.00204 
0.00512 
0.00809 
0~01100 

- 0.00285 
- 0.00217 
- 0'00197 
- 0.00169 
- 0.00147 
- 0.00129 
-0.00113 

C'3' Q'I' C'Z' 

E = 0.2, a = n. 
0-00134 0 0 
0.00003 -0.00018 - 0.00119 
0.00003 - 0.00021 - 0.00117 

T P P 

0.00004 0.00013 0.00249 
0.00006 0.00105 0.01090 
0.00009 0.00254 0.02401 
0.00011 0.00461 0.04179 

E = 0.2, a = 

0.00358 0 0 
0.00027 0'00006 - 0.00056 
0.00007 0.00009 .000077 
0.00004 0.00106 0.00903 
0*00017 0.00289 0-02465 
0.00042 0.00558 0.04755 
0.00077 0.00914 0.07768 

E = 0-2, a = 0 

0.00196 0 0 
0.00026 0~00011 0.00112 
0.00034 0.00044 0.00476 
0.00086 0.00180 0.01914 
0.00178 0.00406 0.04281 
0.00306 0.00723 0.07566 
0.00471 0.01129 0-11760 

CT 

0 
- 0'00310 
- 0.00236 

0.00175 
0.00875 
0.01856 
0.03118 

0 
- 0.0021 1 
- 0~00021 
0.00665 
0.01765 
0.03285 
0.05227 

0 
0.00042 
0.00165 
0.00962 
0.02269 
0.04090 
0.06423 

CP Tefr 

(%) 
- 0 

-0.00137 - 
-0.00138 - 

0.00263 66.6 
0.01196 73.2 
0.02657 69.7 
0.04641 67.2 

- 0 
-0.00061 - 

0.00086 - 
0.01009 65.8 
0.02755 64.2 
0.05315 61.8 
0.08683 60.4 

0 
0.00123 - 
0.00521 31.7 
0.02095 46.2 
0.04689 48.4 
0.08289 49.4 
0.12891 50.1 

- 

TABLE 2. Thrust and power input coefficients, GT and C,. d, = 0.023, 
d, = 0.042, d, = 0.034. 

Figures 7 and S indicate how the wave-number and thickness affect the 
power input coefficients. Figure 9 shows the necessary power required to generate 
the non-circulatory flow and the wake. It should be noted that a large percentage 
of the input power is used in the generation of the wake. 

Finally, in figures 10 and 11 are shown the resulting hydrodynamic efficiency 
for various swimming motions and thicknesses. 

9. Conclusion 
In  the present analysis an attempt has been made t o  gain a better funda- 

mental understanding of the mechanics of swimming of flexible bodies. By em- 
ploying a two-dimensional flexible hydrofoil of finite thickness for the model of 
the swimmer and solving the unsteady potential flow problem by resolving i t  



Propulsion of swimming Jlexibbe hydrofoils 49 

nto the non-circulatory and circulatory flows around the body, several interest- 
ing observations can be made. Following are some of the significant results. 

(i) The input power required to drive the hydrofoil and the resulting power of 
propulsion both decrease with increasingly thick profiles. This effect is more pro- 
nounced a t  larger reduced frequencies than at  smaller ones. 

0 0.00208 
0.00135 
0.00079 
0.00013 
0.0007 1 
0.00383 
0.00946 

0.00106 
0.0 0 0 6 4 
0.00044 
0.00074 
0.00408 
0.01107 
0.02172 

0.00066 
0.00079 
0.00118 
0.00273 
0.00893 
0.01928 
0.03375 

- 0.00222 
- 0.00361 
- 0.00346 
- 0.00224 

0.00077 
0.00382 
0.00679 

- 0.00441 
- 0.00382 
- 0.00275 
-0.00107 

0.00174 
0.00433 
0.00678 

- 0.00273 
- 0'00208 
- 0'00184 
- 0.00157 
- 0.00120 
- 0.00091 
- 0'00068 

C p  P CT CP rerr 
C(Z) C'3' 

T 

E = 0.3, a = n (%) 
- 0.00014 0 0 0 0 

0.00001 -0.00013 - 0.00060 - 0.00224 - 0'00073 - 
0 - 0.00023 - 0.00095 - 0.00267 - 0.00118 - 
0 -0.00027 -0.00088 -0.00211 -0.00117 - 

0 0.00013 0.00220 0.00149 0.00233 63.8 
0 0.00124 0.01914 0.00765 0.01038 74 
0.00001 0.00304 0.01990 0.01627 0.02294 71.1 

0.00335 0 0 0 0 
0.00064 - 0.00006 - 0.00044 - 0.00255 - 0.00052 - 
0.00024 - 0.00007 - 0.00048 - 0.00206 - 0.00056 - 
0.00006 0.00010 0.00061 - 0.00027 0.00072 - 

E = 0.3, a = in 
- 

0.00003 0.00125 0.00739 0.00586 0.00864 67.8 
0.00013 0.00345 0.02014 0.01554 0.02359 65.9 
0.00031 0.00669 0.03873 0.02884 0.04543 63.4 

0.00207 0 0 0 0 - 

0.00036 0.00003 0.00017 - 0'00091 0*00020 - 
0.00023 0.00014 0.00091 - 0.00042 0'00104 - 

6 = 0.3, a = 0 

0.00028 0.00055 0.00392 0.00144 0.00446 32.3 
0.00071 0.00220 0.01573 0.00844 0.01840 45.9 
0.00146 0.00496 0.03505 0.01982 0.04003 49.6 
0.00253 0.00884 0.06171 0.03560 0.07056 50.6 

TABLE 3. Thrust and power input coefficients, CT and Cp. do = 0.023, 
d, = 0.042, d, = 0.034. 

(ii) A high percentage of the power of propulsion is derived from the non- 
circulatory flow around the hydrofoil. 

(iii) The wake produces no net forward thrust for a standing-wave-type 
swimming motion, whereas for finite displacement wave velocities the wake can 
produce positive propulsion for certain reduced frequencies. 

(iv) The thrust produced by the non-linear unsteady perturbation velocities 
in the Bernoulli equation is positive for all values of the reduced frequencies. 
However, this thrust is quite small compared with the linear terms except for 
very small reduced frequencies. 

(v) Avery high proportion of the input power is used in the generation of the 
wake vortices. 

(vi) High swimming efficiencies are associated with high wave-numbers. For 
the type of swimming motion used in the present analysis, the maximum hydro- 
dynamic efficiency was approximately 74 yo with a wave-number equal to 7~ and 
a reduced frequency of 6. For this efficiency, the corresponding displacement wave 
velocity is approximately 90 '$(, greater than the forward speed of the swimmer 
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Figure 11. Efficiency ws. reduced frequency (a = 0).  
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